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OverviewOverview

• Start date: Sept. 2007
• End date: Oct. 2011
• Percent complete: 15%

• Barriers addressed
U. High-Temperature Thermochemical 

Technology
V. High-Temperature Robust Materials
W. Concentrated Solar Energy Capital Cost
X. Coupling Concentrated Solar Energy & 

Thermochemical Cycles

• H2 Production Target: $3.00/kg
• Total project funding

– DOE share: $4M
– Contractor share: $1M

• $300k received in FY07
• Funding for FY08: $1M

Timeline

Budget

Barriers

Partners
Project lead:

Solar System 
Development

• FSEC at UCF
Reactor/Receiver & 
Process Development
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ObjectivesObjectives
• Evaluate photo/thermo-chemical water splitting cycles that 

employ the visible portion of the solar spectrum for 
production of hydrogen

• Select a cycle that has the best potential for cost-effective 
production of hydrogen from water – DOE target of 
$3.00/kg H2

• Demonstrate technical feasibility of the selected cycle 
using solar input in a bench-scale reactor

• Demonstrate pre-commercial feasibility via a fully-
integrated pilot-scale solar hydrogen production system 

• Perform economic analysis of the selected cycle.
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Project ParticipantsProject Participants

• Science Applications International Corp.
– Contract Management
– Solar Concentration System Development 

& System Integration
• Florida Solar Energy Center at UCF

– Photo/Thermo-Chemical Cycle 
Evaluation/Selection

– Reactor/Receiver & System Design
• IPHE partnership
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Project PhasesProject Phases

• PHASE 1: Sub-cycle testing & 
evaluation 

• PHASE 2: Bench-scale testing of 
the complete cycle & pilot plant 
design 

• PHASE 3: Pilot-scale 
demonstration
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Milestones, Schedule & DeliverablesMilestones, Schedule & Deliverables

Month-Year Type Description Status

Sep ‘08 Report Select preferred water-splitting cycle, based on cost & performance 
evaluations

Preliminary design of solar concentrator for pilot-scale test system

Summary of experimental results & economic analysis, with H2 cost 
estimate & recommendations for bench scale system

Optimal high temperature water-splitting cycle selected for bench-scale 
testing & non-federal cost share in place for Phase 2

Summary of bench-scale reactor & solar system test results

Bench-scale results prove to be technologically feasible to support 
scale-up to pilot-scale demonstration & reveal no major technical 
hurdles

Economic analysis shows that the projected cost of hydrogen from this 
technology will meet 2010 target of < $3/kg

Design of pilot-scale solar concentrator & pilot-scale receiver/reactor

Completion of concentrator installation; demonstration of dish operation 
with receiver

Final report with results of all testing and development, final cost 
estimates, & recommendations for further development

Sep ‘08 Report

Complete

ongoing

ongoingMar ‘09 Report

Mar ‘09 GO/ NO-GO
To Phase 2

Mar ‘10 Report

Mar ‘10 GO/ NO-GO
To Phase 3

Sep ‘10 Report

Apr ‘11 Report

Sep ‘11 Report
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Phase 1 ApproachPhase 1 Approach

• Sub-cycle Testing & Evaluation
– Photo/Thermo-Chemical Cycle Analysis
– Lab Testing of Selected Cycle
– Report - Preferred Cycle Selection
– Reactor/Process Configuration

• Solar Concentrator Design
– Concentrator Specifications
– Preliminary Concentrator Design
– Subsystem Tests
– Report - Prelim. Solar Concentrator Design

• Economic Evaluation
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Technical Accomplishments/ Technical Accomplishments/ 
Progress/ResultsProgress/Results

• Completed cycle analyses
• Selected cycle for further development
• Validated hydrogen production photo-

process
• Validated oxygen production sub-cycle 

chemistry
• Evaluated reactor/receiver options
• Evaluated solar collector configurations
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SS--NHNH33 Solar Water Splitting CycleSolar Water Splitting Cycle

O2 Production 
Process

• Thermocatalytic
• Operates at 

λ>520 nm
• Requires ~80% of 

solar spectrum

H2 Production Step
• Photocatalytic
• Operates at λ<520 nm
• Requires ~20% of 

solar spectrum

O2

H2

(NH4)2SO3

NH 3
&H 2O

ZnOSO2

Low Temp.
reactor(NH4)2SO4

Photoreactor

ZnSO4

High Temp. reactor

ZnSO4

H2O
<520 nm

λ>520 nm



10

Aspen Flowsheet of SAspen Flowsheet of S--NHNH33 CycleCycle
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Comparison of SComparison of S--NHNH33 Cycle Cycle 
Efficiency to Other HT CyclesEfficiency to Other HT Cycles##
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Photocatalyst Screening for Photocatalyst Screening for 
Hydrogen ProductionHydrogen Production

(NH4)2SO3(aq) + H2O(l) → (NH4)2 SO4(aq) + H2(g)
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Setup for Photocatalytic HSetup for Photocatalytic H22
Production ExperimentsProduction Experiments
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Stability of the Photosystem in Stability of the Photosystem in 
Hydrogen Generation StepHydrogen Generation Step
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Photocatalyst: Pt/Pd doped CdS - 1wt%/0.4wt% of CdS
Photocatalyst loading: 0.5 g CdS in 300 mL of photolyte
Temperature= 25oC
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Photon Efficiency as a Function Photon Efficiency as a Function 
of Single Metal Dopant Loadingof Single Metal Dopant Loading
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Photocatalyst loading: 0.5 g CdS in 300 mL photolyte: 1M (NH4)2SO3
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Effect of Photolyte TemperatureEffect of Photolyte Temperature

Temperature, oC
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Photocatalyst loading: 0.5g CdS in 300 mL photolyte

Dopant loading: Pt-M (Pt=1wt% of CdS)

Co-dopant loading: M= Pd or Ru (0.4 wt% of CdS)

Pt-Pd

Pt-Ru



18

SubSub--Cycle for Oxygen Cycle for Oxygen 
ProductionProduction

(NH4)2SO4(s) + ZnO(s) → 2NH3(g) + ZnSO4(s) + H2O(g)

ZnSO4(s) → SO2(g) + ZnO(s) + ½O2(g)
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Experimental MethodologyExperimental Methodology

Investigated thermocatalytic decomposition of:
• Pure (NH4)2SO4

• ZnO:(NH4)2SO4 = 1.5:1 (molar ratio)

• ZnSO4

In the temperature range of 100oC-900oC.

Employing following analytical techniques:
• TG-DTA

• TPD-MS

• GC-MS/UV-Vis
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Thermocatalytic Decomposition Thermocatalytic Decomposition 
of (NHof (NH44))22SOSO44/ZnO /ZnO –– Summary of Summary of 

Reaction Product AnalysisReaction Product Analysis
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ZnO/(NHZnO/(NH44))22SOSO44 Thermocatalytic Thermocatalytic 
Decomposition Decomposition –– Reaction Reaction 

MechanismsMechanisms

Step 1 (T< ~400oC):   

(NH4)2SO4(s) → NH3(g) + NH4HSO4(s)

NH4HSO4(s) + ZnO(s) → NH3(g) + H2O(g) + ZnSO4(s)

Step 2 (T<~800oC):    

ZnSO4(s) → ZnO(s) + SO3(g)

Step 3 (T>~800oC):    
ZnSO4(s) → ZnO(s) + SO2(g) + ½O2(g)
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Solar Hydrogen Production  Solar Hydrogen Production  
Heliostat Cost ReductionHeliostat Cost Reduction

Heliostats are the largest single cost 
component in the solar hydrogen 
production system

Identified potential for cost savings using a GRC 
(Glass-Reinforced Concrete) heliostat structure :

• Very low cost material ($0.15/kg)
• Easy to process (automated spray on mold)
• Excellent weathering and stiffness
• Excellent design flexibility (molded-in reinforcing 

ribs and mounts; pre-tensioning is possible)

Preliminary design:
• Small (10-15 m2) heliostat, factory-produced, PV 

self-powered, with wireless communication to 
minimize field wiring costs

• Factory-made, surface-installed concrete track 
foundation to simplify installation
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Solar Hydrogen Production  Solar Hydrogen Production  
Preliminary System ComparisonPreliminary System Comparison

• Results:
• FSEC process hydrogen cost <$3/kg
• Hot/cold mirror systems more expensive
• FSEC process with separate photoreactor 

shows cost advantage over baseline (HyS)
• Advanced heliostat improves costs further

• GRC prototype heliostat cost estimated at 17% 
less than conventional glass/metal heliostat 
($105/sq.m vs. $126/sq.m)

Area of Solar 
Reflectors 

[sq.km]

Land 
area 

[sq.km]

Total 
Capital Cost 

[$M]

Cost of 
Hydrogen

[$/kg]
Baseline Hybrid Sulfur (HyS) System (Kolb): 

Heliostat/Central Receiver 1.30 6.50 381.2 3.00 

Dish concentrator 0.85 3.42 409.2 3.13 
FSEC S-NH3 Cycle w/ Solar Boost:

Dish concentrators w/cold mirror
Heliostat w/hot mirror

Heliostat-separate photoreactor
Advanced GRC Heliostat-separate rxr

0.83
1.06
0.84
0.84

3.33
5.31
5.90
5.90

644.3
810.6
435.1
417.4

3.33 
4.12 
2.33 
2.25
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Future WorkFuture Work

• Close & complete analyses of S-NH3 cycle
• Complete H2 production photocatalyst screening
• Reduce noble metal loading on the photocatalyst
• Develop immobilized photocatalyst formulations
• Conclude oxygen production process optimization
• Analyze & design the high temperature 

reactor/receiver system
• Complete solar collector system analysis & design
• Perform technoeconomic & H2A analysis of the S-

NH3 cycle
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SummarySummary
• S-NH3 photo/thermochemical water splitting cycle has 

been validated for solar hydrogen production
• S-NH3 cycle utilizes the thermal portion of solar 

spectrum for the production of O2 while the high energy 
photonic part of sunlight is used for hydrogen generation

• The 1st law efficiency of the S-NH3 cycle was calculated 
using Aspen flowsheeting & shown to be 51%

• A large number of doped & polymer stabilized CdS 
based photocatalysts have been synthesized and 
evaluated for H2 production from aqueous ammonium 
sulfite solutions

• Heliostat field appears to be the preferred solar 
concentrator approach

• GRC shows promise to lower heliostat field costs
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